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Abstract. Recent results are reported in the development of 2-layer cable-in-conduit (SuperCIC) 

that is designed for use in hybrid-coil magnets. SuperCIC preserves the full performance of the 

individual wires, and can be formed into flared-end windings for dipoles into layer-wound to-

roids and solenoids for hybrid windings for tokamaks. The structure of the SuperCIC windings 

is designed to accommodate winding and heat-treating sub-windings of Bi-2212, Nb3Sn, and 

NbTi separately and then assembling them and preloading in the magnet. 

1.  Introduction 

Ever-higher magnetic field is desired for proposed hadron colliders, tokomaks, and similar applications.  

Each of the superconductors that has been rendered into practical wire has an upper limit to the magnetic 

field that immerses the winding: NbTi is limited to ~8 T, Nb3Sn is limited to ~15 T, and only the Bi-

2212 and REBCO and Bi-2223 can operate at higher fields.  At the same time the superconductor cost 

increases dramatically for each succeeding step in operating field: ~$1/kA-m for NbTi [1], ~$5/kA-m 

for Nb3Sn, and ~$100/kA-m for Bi-2212 and Bi-2223, and considerable more for REBCO [2].  There is 

therefore a strong motivation to develop hybrid magnet technology, in which the winding is segmented 

into sub-windings of the respective superconductors in which the field at each superconductor conductor 

is within its field range. 

Hybrid windings have long been used successfully for superconducting solenoids, Nb3Sn/NbTi as-

semblies for many years [] and recently for NMR spectrometers [3].  The geometry of a solenoid ac-

commodates hybrid windings naturally, since the sub-windings are configured as concentric cylindrical 

shells, each with its own stress shell to support Lorentz forces. 

The cable technology used in all collider dipoles is Rutherford cable [4], shown in Fig. 1a.  The high-

current windings for the toroids and solenoids of tokamaks and most windings for superconducting 

magnetic energy storage (SMES) utilize the ‘cable-of-ropes’ CIC shown in Fig. 1b.   

Hybrid windings with both Rutherford cable and CIC pose major challenges for fabrication, assem-

bly, stress management, and magnetization effects on field homogeneity.  NbTi and REBCO sub-wind-

ings do not require heat treatment, but Nb3Sn sub-windings require heat treatment in final form to 650 

C in inert gas, and Bi-2212 sub-windings require heat treatment in final form to 890 C in a gas mixture 

of 49 bar N2 +1 bar O2.  Nb3Sn and Bi-2212 sub-windings are fragile after heat treatment and so assembly 

of sub-windings is challenging.  Lorentz forces within the winding increase ~B2 and would cause strain 

damage in Nb3Sn or Bi-2212 with B > 15 T unless the Lorenz stresses on inner windings were 
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intercepted and bypassed past the outer windings.  Lastly REBCO tapes have much larger effective 

filament size than NbTi or Nb3Sn, yet they must be used in the highest field region of the winding which 

is closest to the high-field region of a collider dipole.  Persistent currents develop in the filaments and 

would generate significant multipole errors for high-field collider dipoles.  In light of the above chal-

lenges, no hybrid windings have yet been built for either dipole or toroid applications.  

In recent years CERN has examined the possibility of doubling the energy of LHC by replacing the 

8 T magnet ring by a >16 T ring [5,6,7] – HE-LHC, and the larger vision of a 100 TeV hadron collider 

– FCC-hh [8].  Superconducting dipole R&D efforts are progressing at a number of laboratories world-

wide [9].  All of the designs under development utilize Rutherford cable in winding geometries of cos 

, block-coil, canted cos  and common-coil.  All designs face a number of daunting challenges: how 

to manage Lorentz stress within the thick windings; how to configure the ends of each turn to accom-

modate the beam tube yet provide a compact stress support; how to integrate hybrid windings that would 

minimize the quantity of the most expensive superconductors. 

Also in recent years there has been growing interest in developing fusion tokamaks with stronger 

toroidal field at the plasma radius and more compact geometry than that of ITER [10].  The interplay of 

parameters that govern the potential of a tokamak to reach practical breakeven as an energy source has 

led to designs for a compact spherical tokamak with ~1 m plasma radius and aspect ratio ~2:1.  Of 

particular importance is the overall winding power density JWP (including CIC and structure) [11].  

Adopting hybrid windings for a tokamak would require that each sector winding be fabricated as a layer-

wound configuration.  In the ~40 kA Nb3Sn windings of the ITER toroid there is significant degradation 

of critical current in the wires of the ‘cable-of-ropes’ configuration of cable-in-conduit (CIC) [12].  

Along the length of any wire in the ITER CIC, there are unsupported regions and regions where adjacent 

wires are crushed onto one another to make a divot.  Both effects significantly reduce critical current in 

the wires so that JWP is only ~14 A/mm2.  The analysis of Ref. 11 shows that JWP > 70 A/mm2 will be 

required for optimum electric power generation and breakeven for power generation.  

A collaboration among Texas A&M University (TAMU), Accelerator Technology Corp. (ATC), and 

HyperTech Research has developed a novel ordered-structure cable-in-conduit (SuperCIC), shown in 5 

1c, that specifically address the above challenges [13].  The ordered-structure CIC provides uniform 

stress support for all wires within the cable, and stress management at the cable level throughout a 

winding, including the flared ends.  It accommodates separate fabrication and heat treatment of sub-

windings, and assembly and preload of assembled windings.  

The initial development of the CIC was done using one layer of NbTi wire for use in a 3 T large-

aperture dipole [14] for the arcs of the proposed electron-ion collider JLEIC [15].  Then a 2-layer NbTi 

CIC (Figure 1d) was developed for use in a 6 T dipole [16], shown in Figure 4, to double the ion beam 

energy for JLEIC [16].   

This paper reports recent development of 2-layer SuperCIC using Nb3Sn and Bi-2212 wire to provide 

a basis for hybrid-coil dipoles and tokamaks with bore fields >16 T.  

 

Figure 1. Cables used in superconducting magnets (to same scale): a) Rutherford cable is used in 

superconducting dipoles; b) ‘cable-of-ropes’ CIC is used in toroids and solenoids for tokamaks and 

energy storage; c) single-layer SuperCIC was developed the arc dipoles of JLEIC; d) 2-layer Su-

perCIC is being developed for use in high-field hybrid-coil dipoles, toroids, and solenoids.  The 2-

layer SuperCIC and ITER CIC are shown to same scale, with same operating current. 

a) b) c) d) 
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2.  Two-layer NbTi cable-in-conduit  

The single-layer NbTi CIC used in the 3 T JLEIC dipole is formed by cabling wires onto a thin-wall 

perforated stainless steel (316SS) center tube Fig. 2a) with a twist pitch.  The cabling is done using a 

24-spool stranding machine, shown in Fig. 2b.  Next a spiral over-wrap of SS foil tape is applied, and 

the cable is inserted in a seamless CuNi sheath tube (Fig. 2c), and the sheath tube is drawn onto the cable 

(Fig. 2d) to compress all wires against the center tube and immobilize them.   

Several innovations were important to the success of the 3 T CIC dipole, each has been adapted for the 

2-layer NbTi Super CIC for a 6 T JLEIC dipole, and each is being utilized in developing 2-layer Super-

CIC containing Nb3Sn and Bi-2212 for high-field applications:  

2.1.  Robotic benders to form the flared ends for dipole windings 

The ends of each turn in a dipole must be flared up/down to accommodate the beam tube.  The flared 

ends have presented a focal challenge in most high-field dipole developments.  A set of robotic benders 

has been developed that form a constant-radius bend of the SuperCIC while maintaining the sheath tube 

to be locally round in transverse profile as it is bent into an arc.  This is accomplished using conformal 

die sets and robotic bend tools shown in Fig. 3a,b.  The sheath tube is actually inelastically deformed 

throughout the bend to maintain its round contour, so that the interior geometry remains benign to the 

registration of the enclosed superconducting wires.  

 

1. Perforated center tube 

(SCHe flow). 
2. Cable wires onto center 

tube, SS tape over-wrap. 

3. Pull cable through sheath 

tube as loose fit. 

5. Draw sheath tube onto cable. 

6. Finished 140 m segment 

of CIC for JLEIC dipole. 

Figure 2. Fabrication procedure for SuperCIC. 

flux 

plate 

Figure 4. Quadrant cross-section of the 6 

T CIC dipole: green and gray– G-11 

structure elements, blue – steel flux re-

turn.  Note the steel flux plate. 

Figure 3. Robotic bending tools used to form a) the 180 

bend and b) the 90º saddle bend that comprise the end ge-

ometry of each winding turn for a collider dipole; c) a com-

pleted 24-turn end region of the 3 T JLEIC dipole. 
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2.2.  Eliminating differential strain in the bends of flared ends 

As an end is formed, wires located on the outside of the bend must transit a longer catenary length than 

those on the inside.  The twist pitch of the wires in each layer of cable is chosen to be exactly equal to 

the mean bend arc length used to form the end windings around a 90º arc.  With that choice all wires 

have exactly the same catenary length around each bend segment, so that no strain is propagated into 

the straight regions of cable flanking the bend. 

With that provision, the wires still must locally shift transversely as each 90º bend is formed as the 

each wire spirals from inside of the bend to the outside or vice versa.  To facilitate this transverse shift 

without residual strain in the wires, it was found necessary to provide a spiral-wound over-wrap of 316 

stainless steel (316SS) which provides a slip-surface on the outside of each wire layer.  Samples of the 

cable were formed and bent to a 180º arc with the bend radius required for the dipole winding.  Samples 

were dissected, wires were etched to determine filament breakage, and wires were tested for short-sam-

ple current and compared with witness samples.  After optimization of the bend tools and of a function-

alized multi-layer over-wrap, there was no filament breakage and extracted wires in the bend-formed 

SuperCIC retained the same short-sample current as witness wires. 

In order to achieve the larger cable current required for the 6 T NbTi dipole for JLEIC, it was neces-

sary to add a second layer of wires to the SuperCIC cable.  This was accomplished using the same 

stranding machine (Fig. 1b), but significant development was required to achieve the bending properties 

for the larger and stiffer SuperCIC structure.   

A problem arose in tight-radius bending of the 2-layer SuperCIC.  The spiral over-wrap was applied 

on the inner layer, leaving a 1 mm-wide gap between foil turns to provide for liquid helium flow during 

magnet operation. When segments of the 2-layer SuperCIC were formed into a U-bend and dissected, it 

was found that the foil of the over-wrap had carved divots into the wires of the inner layer in the region 

of the bend (Figure 5a).  The divots were formed by the edge of each spiral wrap of 316SS foil digging 

into the wires as the bend was formed.  A multi-laminar inter-layer over-wrap was applied between the 

first and second layers.  The inner wires are cabled with a clockwise (CW) pitch, the inner 316SS over-

wrap is applied with a counter-clockwise (CCW) pitch and 1 mm gap.  Two layers of Cu foil tape are 

applied with opposite signs of pitch and 1 mm gap: the outer 316SS over-wrap is applied with a CW 

pitch and 1 mm gap, and the outer wires are cabled with a CCW pitch.  Samples of the SuperCIC were 

formed and bent and then dissected as before.  No surface damage was observed on either layer (Figure 

5b).  Similar procedures were used to validate that wire performance is preserved in the finished 2-layer 

NbTi CIC.   

3.   Support structure for CIC winding for a dipole  

A support structure was developed to support the inner SuperCIC turns in precise geometry, and to 

similarly position succeeding SuperCIC layers precisely.  It is an epoxy-impregnated assembly of a 

fiber-reinforced polymer (FRP) support beam with the 10 cm x 6 cm 316SS beam tube, and a set of FRP 

side plates that support the succeeding layers of the winding as shown in Figure 4.  

Figure 5. a) single-layer over-wrap carved divots in the wires of the inner layer; b).a multi-layer 

over-wrap was applied between inner and outer wire layers, there was no surface damage. 
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The pattern of channels that support and position all SuperCIC turns was precision-machined in the 

support beam and side plates. The SuperCIC turns for a 1.2 m model dipole were wound, and metrology 

was performed to measure the r.m.s. precision with which the SuperCIC turns are confined in the posi-

tions defined in the magnetic design to produce field homogeneity within the bore tube.  The measured 

r.m.s. position error of individual SuperCIC turns was <.05 mm in the global frame of the dipole, cor-

responding to random field multipoles an, bn < 1 unit (10-4 with reference radius 2/3 of the bore) over 

the field range from injection to collision energy [14].  

Figure 6a summarizes the sequence for barrel-winding the SuperCIC layers of a block-coil dipole.  

Figure 6b shows a completed winding for the 3-T JLEIC dipole, still mounted on the winding table.  The 

robotic bending tools can be seen suspended above.  The total length of the flared-end winding on the 6 

T JLEIC dipole is 300 m.  

4.  Development of 2-layer Nb3Sn SuperCIC 

A collaboration of Texas A&M, Accelerator Technology Corp., and HyperTech Research developed a 

single-layer Nb3Sn-based CIC [17].  The development was done using HyperTech’s fine-filament tube-

process Nb3Sn wire.  In developing the 2-layer NbTi CIC and the Nb3Sn SuperCIC, a proprietary sensor 

method was used to detect any filament breakage within strands during the forming of the bends.  The 

method was very useful in optimizing the material choices and pre-heat treatments for the perforated 

center tube, the foil over-wraps, and the sheath.   

Figure 7 shows a 2-layer Nb3Sn SuperCIC: the cross-section of the tube-process Nb3Sn wire, the 

succession of over-wraps, and the completed SuperCIC.  U-bend samples have been evaluated by dis-

section (Figure 8), etching, and short-sample measurement, and there is no filament breakage from the 

optimized bending process.  Testing of sample segments of 2-layer Nb3Sn in background field is 

planned. 

Figure 6. Winding the layers of a CIC block-geometry dipole: a) completed winding of 3 T JLEIC dipole; 

b) winding strategy for the 6 T CIC winding, showing the stages when successive layers are complete. 

Figure 7. 2-layer Nb3Sn SuperCIC: a) HyperTech’s tube-process Nb3Sn wire, 

b) over-wraps of inner layer 316SS and Cu foil tapes applied; c) outer layers of 

Cu foil and 316SS tapes applied; d) finished SuperCIC. 
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5.  Development of 2-layer Bi-2212 SuperCIC 

Bi-2212/Ag wire is soft and has limited strength. Also the cable must be heat-treated in final shape 

through a partial melt, during which the metal atoms in the liquid phase are highly mobile in the silver 

matrix and susceptible to formation of parasitic phases. Also metal atoms from surfaces that contact the 

wires can diffuse through the silver matrix and form intermetallics within the superconducting cores.  

Considerable effort was made to develop a combination of under- and over-wrap foils that provide two 

distinct functions:  

• a diffusion barrier foil provides a soft cushion to protect the wires from deformation from the alloy 

foil layers during bending of flared ends, and prevents metal migration between the wires and the 

center tube and sheath tube; 

• slip-surface foil over-wrap on the outer layer to enable wires to re-arrange configuration as the Su-

perCIC is bent. 

An optimum choice of materials and surface treatments was found that provides those functions, and 

sample segments of 2-layer Bi-2212 SuperCIC were fabricated and bent with the required 5 cm bend 

radius. Figure 7a shows the completed SuperCIC.  Figure 7b shows an enlargement of the interlayer 

region showing the under- and over-wrap layers.  A specimen of the SuperCIC was carefully dissected 

to examine all of its components, shown in Fig. 7c.  There was slight deformation of the cross-section 

of the wires, but less than is occasioned in forming of Rutherford cable.  There are no divots or other 

damage to any wires.  

The 2-layer Bi-2212/Ag SuperCIC will be heat-treated using overpressure processing, in which 50 

atm pressure is maintained during heat treatment (including 1 atm partial pressure of O2).  The center 

tube and sheath tube have been made from Haynes 230 alloy, which is not damaged by exposure to 

oxygen for periods of hours.  The Haynes 230 sheath tube has sufficient strength at 870 C to serve as a 

50 atm pressure barrier.  Flow of the high-pressure buffer gas is provided through the center tube, and 

the perforations in the it and the gaps in the over-wraps enable ready access of oxygen during the periods 

of partial melt and annealing.  This eliminates the need for a high-pressure furnace that puts an entire 

winding in the 50 atm buffer gas. 

6.   Cryogenic considerations 

Cryogen flow is supported through the center tube.  It is anticipated to operate the SuperCIC using 

supercritical helium (SCHe), so that single-phase flow is assured during operation.  Simulations of 

quench propagation have been made for the high-windings in the dipole and toroid magnets described 

in the following section.  When quench protection heaters are fired at both ends of a 150 m-long 

Figure 8. 2-layer Bi-2212 CIC: a) cross-section half-way around a 

bend; b) detail showing under- and over-wrap foils; separate com-

ponents from within the 2-layer CIC after dissection. 
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SuperCIC winding, a maximum temperature of ~100 K is reached and the maximum pressure within 

the sheath tube is ~60 atm, well within the strength of the Haynes 230 sheath tube.  

7.  Application of Super CIC for high-field hybrid-coil dipoles 

The 2-layer SuperCIC offers an attractive option for the hybrid windings for high-field dipoles [18].  

Figure 9 shows a design for a 19 Tesla dipole suitable for use in HE-LHC.  It contains sub-windings of 

Bi-2212, Nb3Sn, and NbTi, each configured as barrel-wound sub-windings with planar vertical bound-

aries.  The divisions are made so that the magnetic field at conductor for each sub-winding is within the 

limits for that superconductor.  The sub-windings are assembled in Russian doll fashion, connected in 

series, and the size and number of wires in each 2-layer CIC are chosen so that all sub-windings operate 

at the same fraction of critical current at maximum excitation.  Parameters are summarized in Table 2. 

Bi-2212   Nb3Sn.     NbTi 

m 

ȁ𝑩ȁ (𝑻) 

Figure 9. 19 T hybrid dual dipole.  Lines of 

force and color-code of ȁ𝐵ȁ are shown at 

full excitation (27 kA). 

Figure 10. a) Cross-section of the central support struc-

ture of the hybrid dipole; b) simulated von Mises stress 

(MPa) in the windings, c) detail showing first stages of 

winding the Bi-2212 sub-winding. 

Table 2. Main parameters of a hybrid-winding 16 

T collider dipole. 

 

Table 1. Main parameters for hybrid-winding 16 T toroid. 

R0 1.2 m 

B @R0 6.7 T 

B @coil    17.4 T 

A 2.0  

CIC # strands,  wire dia.  

   Bi-2212 42 strands, 0.97 mm  

   Nb3Sn 42 strands, 0.97 mm  

JWP 140 MA/m2 

Iop 28.7 kA 

Iop/Ic @4.2K 0.7  

# layers 11  

SC(Layers) Bi-2212 – 5 layers 

Nb3Sn  –   6 layers 

 

   

 



ICMC 2019

IOP Conf. Series: Materials Science and Engineering 756 (2020) 012031

IOP Publishing

doi:10.1088/1757-899X/756/1/012031

8

 

 

 

 

 

 

The structural elements are made of Ti-6Al-4V alloy, precision-machined to define the positions of 

all SuperCIC turns, as shown in Fig. 10a.  Figure 10b shows a simulation of the von Mises stress distri-

bution within the winding at 18 T bore field.  The maximum stress in the sheath tubes is 219 MPa, 38 

MPa, and 338 MPa, respectively.  The maximum stress in the wires within each turn of SuperCIC ap-

pears to be ~half of those values (and so within the limits to avoid strain degradation), but multi-scale 

modeling of a twisted cable within a conduit with spring-loaded center tube in a winding is extremely 

difficult and must ultimately be validated in actual model dipoles.   

8.  Application of SuperCIC for high-field hybrid-coil toroids 

Figure 11a shows a conceptual design of an 18 T toroid for a compact spherical tokamak designed by 

Menard and Brown [11].  It utilizes a layer-wound hybrid winding, containing sub-windings of Bi-2212 

(for the inner layers) and Nb3Sn (for the outer layers), shown in Fig. 11b.  The solenoidal winding is 

made entirely of Nb3Sn SuperCIC.  Each 18 T toroid winding is a layer-wound hybrid in which the outer 

4-layer sub-winding (in lowest field) is wound with Nb3Sn SuperCIC and the inner 4-layer Bi-2212 sub-

winding is wound with Bi-2212 CIC.  By using the expensive Bi-2212 only in regions where the field 

in conductor is >14 T, the superconductor cost is minimized and the winding current density is maxim-

ized.  SuperCIC windings uniquely make it possible to use hybrid-coil toroids, to make separate heat-

treats for each sub-winding, and to assemble and preload the windings with precise geometry.   

Figure 11. a) 16 T compact tokomak currently under design at PPPL using hybrid 2-layer CIC; 

b) detail of one hybrid winding showing the layer-wound sub-windings of Nb3 Sn and Bi-2212; 

c) armor shell for the 2-layer CIC, co-wound with the CIC to form the toroid winding. 

MPa MPa 

Figure 12. a) Calculated field distribution in a winding module of a 16 T toroid; b) von Mises stress 

distribution in the co-wound armor of the winding.    

T 
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 The accumulating stress in a large-scale toroid winding must be managed by enclosing the SuperCIC 

in an armor shell made of high-strength alloy.  We have made an innovation for the winding structure, 

in which the armor shell is configured as two half-shells that enclose the SuperCIC.  The three elements 

- inner half-shell, SuperCIC, and outer half-shell – are co-wound to form the sub-winding of each toroid 

segment.  The armor half-shells are slit as shown in Fig. 11c with a row of kerf-cuts.  The half-shells 

can be bent readily to the required curvature radius without deforming its bulk metal or the SuperCIC. 

This uses the same principal as a carpenter uses when he saws a row of kerf-cuts part-way through the 

wooden molding for a stair-case. The hybrid SuperCIC and the kerf-cut co-wound armor are key to 

achieving JWP ~ 140 A/mm2. 

Table 1 summarizes the main parameters of a 16 T toroid for the compact spherical tokamak of Ref. 

11 that provides 6.7 T at the plasma radius 1.2 m.  Each toroid winding is configured as hybrid sub-

windings of Nb3Sn and Bi-2212.  shows the calculated stress distribution in the overall structure and in 

the armor sheaths of the SuperCIC windings.  As with the dipole, the maximum stress in the wires is 

estimated to be <half that in the armor sheath, but accurate simulation requires multi-scale modeling (in 

progress) and will need to be validated in model windings. 

 

9.  Conclusions 

A novel approach to superconducting cable-in-conduit is being developed for applications requiring 

hybrid windings operating at high magnetic field.  SuperCIC supports all wires within the CIC so that 

strain degradation can be prevented even at very high fields.  The robust sheath tube provides stress 

management within each sub-winding.   SuperCIC is now available as a product in lengths up to 150 m. 

The internal structure permits bending of SuperCIC on a radius ~8x cable radius, which accommo-

dates applications for collider dipoles. A co-wound armor shell can be applied for toroid applications to 

provide high-strength structure without degradation of the cable during winding.  Designs for SuperCIC 

have been made in prototype for up to 50 kA operating current.  SuperCIC hybrid windings appear to 

offer promising performance in high-field magnets for particle accelerators and for fusion magnetics. 
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